Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.922
Filtrar
1.
Lab Chip ; 24(3): 537-548, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38168806

RESUMO

The human body is made up of approximately 40 trillion cells in close contact, with the cellular density of individual tissues varying from 1 million to 1 billion cells per cubic centimetre. Interactions between different cell types (termed heterotypic) are thus common in vivo. Communication between cells can take the form of direct cell-cell contact mediated by plasma membrane proteins or through paracrine signalling mediated through the release, diffusion, and receipt of soluble factors. There is currently no systematic method to investigate the relative contributions of these mechanisms to cell behaviour. In this paper, we detail the conception, development and validation of a microfluidic device that allows cell-cell contact and paracrine signalling in defined areas and over a variety of biologically relevant length scales, referred to as the interactome-device or 'I-device'. Importantly, by intrinsic device design features, cells in different regions in the device are exposed to four different interaction types, including a) no heterotypic cell interaction, b) only paracrine signalling, c) only cell-cell direct contact, or d) both forms of interaction (paracrine and cell-cell direct contact) together. The device design was validated by both mathematical modelling and experiments. Perfused stem cell culture over the medium term and the formation of direct contact between cells in the culture chambers was confirmed. The I-device offers significant flexibility, being able to be applied to any combination of adherent cells to determine the relative contributions of different communication mechanisms to cellular outcomes.


Assuntos
Comunicação Celular , Técnicas de Cultura de Células , Humanos , Técnicas de Cocultura , Comunicação Parácrina , Dispositivos Lab-On-A-Chip
2.
Ecotoxicol Environ Saf ; 271: 115994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38262094

RESUMO

Chronic exposure to crystalline silica (CS) contributes to pulmonary fibrosis. Airway epithelium dysfunction and fibroblast activation have both been recognized as pivotal players, alongside disturbances in ferroptosis and glycolysis reprogramming. However, the mechanisms involved remain unclear. In this study, we investigated the crosstalk between airway epithelium and fibroblast in the context of CS-induced pulmonary fibrosis. CS was employed in vivo and the in vitro co-culture system of airway epithelium and fibroblast. Spatial transcriptome analysis of CS-induced fibrotic lung tissue was conducted as well. Results showed that epithelium ferroptosis caused by CS enhanced TGFß1-induced fibroblast activation through paracrine signaling. tPA was further identified to be the central mediator that bridges epithelium ferroptosis and fibroblast activation. And increased fibroblast glycolysis reprogramming was evidenced to promote fibroblast activation. By inhibition of epithelium ferroptosis or silencing tPA of airway epithelium, fibroblast AMPK phosphorylation was inhibited. Moreover, we revealed that tPA secreted by ferroptotic epithelium transmits paracrine signals to fibroblasts by governing glycolysis via p-AMPK/AMPK mediated Glut1 accumulation. Collectively, our study demonstrated the regulation of airway epithelium ferroptosis on fibroblast activation in CS-induced pulmonary fibrosis, which would shed light on the complex cellular crosstalk within pulmonary fibrosis and identify potential therapeutic targets.


Assuntos
Fibrose Pulmonar , Humanos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Dióxido de Silício/toxicidade , Comunicação Parácrina , Proteínas Quinases Ativadas por AMP , Epitélio , Fibroblastos , Glicólise
3.
Aging Dis ; 15(1): 369-389, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307823

RESUMO

Patients with cholangiocarcinoma (CCA) with lymph node metastasis (LNM) have the worst prognosis, even after complete resection; however, the underlying mechanism remains unclear. Here, we established CAF-derived PDGF-BB as a regulator of LMN in CCA. Proteomics analysis revealed upregulation of PDGF-BB in CAFs derived from patients with CCA with LMN (LN+CAFs). Clinically, the expression of CAF-PDGF-BB correlated with poor prognosis and increased LMN in patients with CCA, while CAF-secreted PDGF-BB enhanced lymphatic endothelial cell (LEC)-mediated lymphangiogenesis and promoted the trans-LEC migration ability of tumor cells. Co-injection of LN+CAFs and cancer cells increased tumor growth and LMN in vivo. Mechanistically, CAF-derived PDGF-BB activated its receptor PDGFR-ß and its downstream ERK1/2-JNK signaling pathways in LECs to promote lymphoangiogenesis, while it also upregulated the PDGFR-ß-GSK-P65-mediated tumor cell migration. Finally, targeting PDGF-BB/PDGFR-ß or the GSK-P65 signaling axis prohibited CAF-mediated popliteal lymphatic metastasis (PLM) in vivo. Overall, our findings revealed that CAFs promote tumor growth and LMN via a paracrine network, identifying a promising therapeutic target for patients with advanced CCA.


Assuntos
Neoplasias dos Ductos Biliares , Fibroblastos Associados a Câncer , Colangiocarcinoma , Humanos , Becaplermina , Metástase Linfática , Fibroblastos Associados a Câncer/metabolismo , Comunicação Parácrina , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo
4.
Nature ; 625(7993): 126-133, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123680

RESUMO

Chemical signalling is the primary means by which cells communicate in the embryo. The underlying principle refers to a group of ligand-producing cells and a group of cells that respond to this signal because they express the appropriate receptors1,2. In the zebrafish embryo, Wnt5b binds to the receptor Ror2 to trigger the Wnt-planar cell polarity (PCP) signalling pathway to regulate tissue polarity and cell migration3,4. However, it remains unclear how this lipophilic ligand is transported from the source cells through the aqueous extracellular space to the target tissue. In this study, we provide evidence that Wnt5b, together with Ror2, is loaded on long protrusions called cytonemes. Our data further suggest that the active Wnt5b-Ror2 complexes form in the producing cell and are handed over from these cytonemes to the receiving cell. Then, the receiving cell has the capacity to initiate Wnt-PCP signalling, irrespective of its functional Ror2 receptor status. On the tissue level, we further show that cytoneme-dependent spreading of active Wnt5b-Ror2 affects convergence and extension in the zebrafish gastrula. We suggest that cytoneme-mediated transfer of ligand-receptor complexes is a vital mechanism for paracrine signalling. This may prompt a reevaluation of the conventional concept of characterizing responsive and non-responsive tissues solely on the basis of the expression of receptors.


Assuntos
Pseudópodes , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Proteínas Wnt , Peixe-Zebra , Animais , Gástrula/citologia , Gástrula/embriologia , Gástrula/metabolismo , Ligantes , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Polaridade Celular , Movimento Celular , Pseudópodes/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Comunicação Parácrina
5.
Cell Rep ; 42(12): 113586, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38113139

RESUMO

Melanoma is the deadliest form of skin cancer due to its propensity to metastasize. It arises from melanocytes, which are attached to keratinocytes within the basal epidermis. Here, we hypothesize that, in addition to melanocyte-intrinsic modifications, dysregulation of keratinocyte functions could initiate early-stage melanoma cell invasion. We identified the lysolipid sphingosine 1-phosphate (S1P) as a tumor paracrine signal from melanoma cells that modifies the keratinocyte transcriptome and reduces their adhesive properties, leading to tumor invasion. Mechanistically, tumor cell-derived S1P reduced E-cadherin expression in keratinocytes via S1P receptor dependent Snail and Slug activation. All of these effects were blocked by S1P2/3 antagonists. Importantly, we showed that epidermal E-cadherin expression was inversely correlated with the expression of the S1P-producing enzyme in neighboring tumors and the Breslow thickness in patients with early-stage melanoma. These findings support the notion that E-cadherin loss in the epidermis initiates the metastatic cascade in melanoma.


Assuntos
Melanoma , Humanos , Melanoma/patologia , Esfingolipídeos/metabolismo , Comunicação Parácrina , Queratinócitos/metabolismo , Caderinas/metabolismo , Esfingosina/metabolismo , Lisofosfolipídeos/metabolismo
7.
Tissue Eng Part A ; 29(21-22): 594-603, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37847176

RESUMO

Immune-related applications of mesenchymal stromal cells (MSCs) in cell therapy seek to exploit immunomodulatory paracrine signaling pathways to reduce inflammation. A key MSC therapeutic challenge is reducing patient outcome variabilities attributed to insufficient engraftment/retention of injected heterogenous MSCs. To address this, we propose directly transplantable human single-cell-derived clonal bone marrow MSC (hcBMSC) sheets. Cell sheet technology is a scaffold-free tissue engineering strategy enabling scalable production of highly engraftable cell constructs retaining endogenous cell-cell and cell-matrix interactions, important to cell function. cBMSCs, as unique MSC subset populations, facilitate rational selection of therapeutically relevant MSC clones from donors. Here, we combine human cBMSCs with cell sheet technology, demonstrating cell sheet fabrication as a method to significantly upregulate expression of immunomodulatory molecules interleukin (IL)-10, indoleamine 2,3-dioxygenase (IDO-1), and prostaglandin E synthase 2 (PTGES2) across GMP-grade hcBMSC lines and whole human bone marrow-derived MSCs compared to respective conventional cell suspensions. When treated with carbenoxolone, a gap junction inhibitor, cell sheets downregulate IL-10 and IDO-1 expression, implicating functional roles for intercellular sheet interactions. Beyond producing directly transferable multicellular hcBMSC constructs, cell sheet technology amplifies hcBMSC expression of immunomodulatory factors important to therapeutic action. In addition, this work demonstrates the importance of cell-cell interactions as a tissue engineering design criterion to enhance consistent MSC functions.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Células da Medula Óssea , Engenharia Tecidual , Comunicação Parácrina
8.
J Cell Mol Med ; 27(23): 3692-3705, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37830980

RESUMO

Perineural invasion (PNI) has emerged as a key pathological feature and be considered as a poor prognostic factor in cervical cancer. However, the underlying molecular mechanisms are largely unknown. Here, PNI status of 269 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) samples were quantified by using whole-slide diagnostic images obtained from The Cancer Genome Atlas. Integrated analyses revealed that PNI was an indicative marker of poorer disease-free survival for CESC patients. Among the differentially expressed genes, ADCYAP1 were identified. Clinical specimens supported that high expression of PACAP (encoded by ADCYAP1) contributed to PNI in CESC. Mechanistically, PACAP, secreted from cervical cancer cells, reversed myelin differentiation of Schwann cells (SCs). Then, dedifferentiated SCs promoted PNI by producing chemokine FGF17 and by degrading extracellular matrix through secretion of Cathepsin S and MMP-12. In conclusion, this study identified PACAP was associated with PNI in cervical cancer and suggested that tumour-derived PACAP reversed myelin differentiation of SCs to aid PNI.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Diferenciação Celular , Invasividade Neoplásica/patologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Células de Schwann/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Comunicação Parácrina/genética
9.
Stem Cell Res Ther ; 14(1): 258, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726799

RESUMO

Stromal vascular fraction (SVF) cells, and the adipose-derived mesenchymal stem cells they contain, have shown enhanced wound healing in vitro and in vivo, yet their clinical application has been limited. In this regard, understanding the mechanisms that govern SVF-enhanced wound healing would improve their application in the clinic. Here, we show that the SVF cells and keratinocytes engage in a paracrine crosstalk during wound closure, which results in a new cytokine profile that is distinct from the cytokines regularly secreted by either cell type on their own. We identify 11 cytokines, 5 of which are not regularly secreted by the SVF cells, whose expressions are significantly increased during wound closure by the keratinocytes. This new cytokine profile could be used to accelerate wound closure and initiate re-epithelialization without the need to obtain the SVF cells from the patient.


Assuntos
Células-Tronco Mesenquimais , Fração Vascular Estromal , Humanos , Queratinócitos , Comunicação Parácrina , Citocinas
10.
J Clin Invest ; 133(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37733448

RESUMO

Monocytes and monocyte-derived macrophages (MDMs) from blood circulation infiltrate glioblastoma (GBM) and promote growth. Here, we show that PDGFB-driven GBM cells induce the expression of the potent proinflammatory cytokine IL-1ß in MDM, which engages IL-1R1 in tumor cells, activates the NF-κB pathway, and subsequently leads to induction of monocyte chemoattractant proteins (MCPs). Thus, a feedforward paracrine circuit of IL-1ß/IL-1R1 between tumors and MDM creates an interdependence driving PDGFB-driven GBM progression. Genetic loss or locally antagonizing IL-1ß/IL-1R1 leads to reduced MDM infiltration, diminished tumor growth, and reduced exhausted CD8+ T cells and thereby extends the survival of tumor-bearing mice. In contrast to IL-1ß, IL-1α exhibits antitumor effects. Genetic deletion of Il1a/b is associated with decreased recruitment of lymphoid cells and loss-of-interferon signaling in various immune populations and subsets of malignant cells and is associated with decreased survival time of PDGFB-driven tumor-bearing mice. In contrast to PDGFB-driven GBM, Nf1-silenced tumors have a constitutively active NF-κB pathway, which drives the expression of MCPs to recruit monocytes into tumors. These results indicate local antagonism of IL-1ß could be considered as an effective therapy specifically for proneural GBM.


Assuntos
Glioblastoma , Interleucina-1beta , Receptores Tipo I de Interleucina-1 , Animais , Humanos , Camundongos , Genótipo , Glioblastoma/metabolismo , Glioblastoma/patologia , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Receptores de Interleucina-1/metabolismo , Receptores Tipo I de Interleucina-1/metabolismo , Comunicação Parácrina
11.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686154

RESUMO

The mammary gland is composed of epithelial tissue forming ducts and lobules, and the stroma, composed of adipocytes, connective tissue, and other cell types. The stromal microenvironment regulates mammary gland development by paracrine and cell-cell interactions. In the present study, primary cultures of bovine mammary epithelial cells (bMEC) and bovine adipose-derived stem cells (bASC) subjected to adipogenic differentiation were used to investigate the influence of paracrine factors secreted by preadipocytes and adipocytes on bMEC development. Four types of conditioned media (CM) were collected from undifferentiated preadipocytes (preA) and adipocytes on days: 8, 12, 14 of differentiation. Next, bMEC were cultured for 24 h in CM and cell viability, apoptosis, migratory activity, ability to form spheroids on Matrigel, and secretory activity (alpha S1-casein concentration) were evaluated. CM derived from fully differentiated adipocytes (12 d and 14 d) significantly decreased the number of apoptotic cells in bMEC population and increased the size of spheroids formed by bMEC on Matrigel. CM collected from preadipocytes significantly enhanced bMEC's migration, and stimulated bMEC to produce alpha S1-casein, but only in the presence of prolactin. These results confirm that preadipocytes and adipocytes are important components of the stroma, providing paracrine factors that actively regulate the development of bovine mammary epithelium.


Assuntos
Caseínas , Comunicação Parácrina , Bovinos , Animais , Células Epiteliais , Adipócitos , Epitélio , Meios de Cultivo Condicionados/farmacologia
12.
Cell ; 186(21): 4676-4693.e29, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37729907

RESUMO

The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.


Assuntos
Evolução Biológica , Invertebrados , Neurônios , Animais , Ctenóforos/genética , Expressão Gênica , Neurônios/fisiologia , Filogenia , Análise de Célula Única , Invertebrados/citologia , Invertebrados/genética , Invertebrados/metabolismo , Comunicação Parácrina
13.
Arterioscler Thromb Vasc Biol ; 43(10): 1887-1899, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650330

RESUMO

BACKGROUND: The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions. METHODS: Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells. RESULTS: Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFß (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin ß1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation. CONCLUSIONS: ECM stiffness and TGFß signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.


Assuntos
Comunicação Parácrina , Pericitos , Ratos , Animais , Pericitos/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Matriz Extracelular/metabolismo , Miofibroblastos/metabolismo
14.
Adv Sci (Weinh) ; 10(25): e2207691, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409821

RESUMO

Mitochondrial function impairment due to abnormal opening of the mitochondrial permeability transition pore (MPTP) is considered the central event in acute pancreatitis; however, therapeutic choices for this condition remain controversial. Mesenchymal stem cells (MSCs) are a family member of stem cells with immunomodulatory and anti-inflammatory capabilities that can mitigate damage in experimental pancreatitis. Here, it is shown that MSCs deliver hypoxia-treated functional mitochondria to damaged pancreatic acinar cells (PACs) via extracellular vesicles (EVs), which reverse the metabolic function of PACs, maintain ATP supply, and exhibit an excellent injury-inhibiting effect. Mechanistically, hypoxia inhibits superoxide accumulation in the mitochondria of MSCs and upregulates the membrane potential, which is internalized into PACs via EVs, thus, remodeling the metabolic state. In addition, cargocytes constructed via stem cell denucleation as mitochondrial vectors are shown to exert similar therapeutic effects to MSCs. These findings reveal an important mechanism underlying the role of mitochondria in MSC therapy and offer the possibility of applying mitochondrial therapy to patients with severe acute pancreatitis.


Assuntos
Células Acinares , Células-Tronco Mesenquimais , Mitocôndrias , Pâncreas , Pancreatite , Células Acinares/citologia , Células Acinares/metabolismo , Doença Aguda , Trifosfato de Adenosina/metabolismo , Ácidos e Sais Biliares/metabolismo , Hipóxia Celular , Reprogramação Celular , Vesículas Extracelulares/metabolismo , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/metabolismo , Pancreatite/patologia , Pancreatite/terapia , Comunicação Parácrina , Superóxidos/metabolismo , Cordão Umbilical/citologia , Humanos
15.
Matrix Biol ; 121: 194-216, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37402431

RESUMO

Fibrolamellar carcinomas (FLCs), lethal tumors occurring in children to young adults, have genetic signatures implicating derivation from biliary tree stem cell (BTSC) subpopulations, co-hepato/pancreatic stem cells, involved in hepatic and pancreatic regeneration. FLCs and BTSCs express pluripotency genes, endodermal transcription factors, and stem cell surface, cytoplasmic and proliferation biomarkers. The FLC-PDX model, FLC-TD-2010, is driven ex vivo to express pancreatic acinar traits, hypothesized responsible for this model's propensity for enzymatic degradation of cultures. A stable ex vivo model of FLC-TD-2010 was achieved using organoids in serum-free Kubota's Medium (KM) supplemented with 0.1% hyaluronans (KM/HA). Heparins (10 ng/ml) caused slow expansion of organoids with doubling times of ∼7-9 days. Spheroids, organoids depleted of mesenchymal cells, survived indefinitely in KM/HA in a state of growth arrest for more than 2 months. Expansion was restored with FLCs co-cultured with mesenchymal cell precursors in a ratio of 3:7, implicating paracrine signaling. Signals identified included FGFs, VEGFs, EGFs, Wnts, and others, produced by associated stellate and endothelial cell precursors. Fifty-three, unique heparan sulfate (HS) oligosaccharides were synthesized, assessed for formation of high affinity complexes with paracrine signals, and each complex screened for biological activity(ies) on organoids. Ten distinct HS-oligosaccharides, all 10-12 mers or larger, and in specific paracrine signal complexes elicited particular biological responses. Of note, complexes of paracrine signals and 3-O sulfated HS-oligosaccharides elicited slowed growth, and with Wnt3a, elicited growth arrest of organoids for months. If future efforts are used to prepare HS-oligosaccharides resistant to breakdown in vivo, then [paracrine signal-HS-oligosaccharide] complexes are potential therapeutic agents for clinical treatments of FLCs, an exciting prospect for a deadly disease.


Assuntos
Carcinoma , Sulfatos , Criança , Humanos , Comunicação Parácrina , Heparitina Sulfato/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo
16.
Commun Biol ; 6(1): 588, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280369

RESUMO

Plant meristems require a constant supply of photoassimilates and hormones to the dividing meristematic cells. In the growing root, such supply is delivered by protophloem sieve elements. Due to its preeminent function for the root apical meristem, protophloem is the first tissue to differentiate. This process is regulated by a genetic circuit involving in one side the positive regulators DOF transcription factors, OCTOPUS (OPS) and BREVIX RADIX (BRX), and in the other side the negative regulators CLAVATA3/EMBRYO SURROUNDING REGION RELATED (CLE) peptides and their cognate receptors BARELY ANY MERISTEM (BAM) receptor-like kinases. brx and ops mutants harbor a discontinuous protophloem that can be fully rescued by mutation in BAM3, but is only partially rescued when all three known phloem-specific CLE genes, CLE25/26/45 are simultaneously mutated. Here we identify a CLE gene closely related to CLE45, named CLE33. We show that double mutant cle33cle45 fully suppresses brx and ops protophloem phenotype. CLE33 orthologs are found in basal angiosperms, monocots, and eudicots, and the gene duplication which gave rise to CLE45 in Arabidopsis and other Brassicaceae appears to be a recent event. We thus discovered previously unidentified Arabidopsis CLE gene that is an essential player in protophloem formation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Floema/genética , Comunicação Parácrina , Proteínas de Membrana/genética , Raízes de Plantas/genética , Peptídeos , Diferenciação Celular/genética
17.
J Exp Med ; 220(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37284884

RESUMO

Obesity and type 2 diabetes (T2D) are the leading causes of the progressive decline in muscle regeneration and fitness in adults. The muscle microenvironment is known to play a key role in controlling muscle stem cell regenerative capacity, yet the underlying mechanism remains elusive. Here, we found that Baf60c expression in skeletal muscle is significantly downregulated in obese and T2D mice and humans. Myofiber-specific ablation of Baf60c in mice impairs muscle regeneration and contraction, accompanied by a robust upregulation of Dkk3, a muscle-enriched secreted protein. Dkk3 inhibits muscle stem cell differentiation and attenuates muscle regeneration in vivo. Conversely, Dkk3 blockade by myofiber-specific Baf60c transgene promotes muscle regeneration and contraction. Baf60c interacts with Six4 to synergistically suppress myocyte Dkk3 expression. While muscle expression and circulation levels of Dkk3 are markedly elevated in obese mice and humans, Dkk3 knockdown improves muscle regeneration in obese mice. This work defines Baf60c in myofiber as a critical regulator of muscle regeneration through Dkk3-mediated paracrine signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Comunicação Parácrina , Humanos , Adulto , Camundongos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Obesos , Músculo Esquelético/metabolismo , Regeneração
18.
Biotechnol Bioeng ; 120(7): 1961-1974, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37204009

RESUMO

The realization that soluble factors secreted by heterotypic cells play an importanta role in paracrine signaling, which facilitates intercellular communication, enabled the development of physiologically relevant co-culture models for drug screening and the engineering of tissues, such as hepatic tissues. The most crucial issues confronting the use of conventional membrane inserts in segregated co-culture models that are used to study paracrine signaling between heterotypic cells have been identified as long-term viability and retention of cell-specific functions, especially when isolated primary cells are used. Herein, we present an in vitro segregated co-culture model consisting of a well plate incubated with rat primary hepatocytes and normal human dermal fibroblasts which were segregated using a membrane insert with silica nonwoven fabric (SNF) on it. SNF, which mimics a physiological environment much more effectively than a two-dimensional (2D) one, promotes cell differentiation and resultant paracrine signaling in a manner that is not possible in a conventional 2D culture, owing to high mechanical strength generated by its inorganic materials and interconnected network structure. In segregated co-cultures, SNF clearly enhanced the functions of hepatocytes and fibroblasts, thereby showing its potential as a measure of paracrine signaling. These results may advance the understanding of the role played by paracrine signaling in cell-to-cell communication and provide novel insights into the applications of drug metabolism, tissue repair, and regeneration.


Assuntos
Hepatócitos , Comunicação Parácrina , Ratos , Humanos , Animais , Técnicas de Cocultura , Células Cultivadas , Comunicação Celular , Fibroblastos
19.
Biomed Pharmacother ; 163: 114799, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121147

RESUMO

Cardiac hypertrophy is characterized by cardiac structural remodeling, fibrosis, microvascular rarefaction, and chronic inflammation. The heart is structurally organized by different cell types, including cardiomyocytes, fibroblasts, endothelial cells, and immune cells. These cells highly interact with each other by a number of paracrine or autocrine factors. Cell-cell communication is indispensable for cardiac development, but also plays a vital role in regulating cardiac response to damage. Although cardiomyocytes and fibroblasts are deemed as key regulators of hypertrophic stimulation, other cells, including endothelial cells, also exert important effects on cardiac hypertrophy. More particularly, endothelial cells are the most abundant cells in the heart, which make up the basic structure of blood vessels and are widespread around other cells in the heart, implicating the great and inbuilt advantage of intercellular crosstalk. Cardiac microvascular plexuses are essential for transport of liquids, nutrients, molecules and cells within the heart. Meanwhile, endothelial cell-mediated paracrine signals have multiple positive or negative influences on cardiac hypertrophy. However, a comprehensive discussion of these influences and consequences is required. This review aims to summarize the basic function of endothelial cells in angiogenesis, with an emphasis on angiogenic molecules under hypertrophic conditions. The secondary objective of the research is to fully discuss the key molecules involved in the intercellular crosstalk and the endothelial cell-mediated protective or detrimental effects on other cardiac cells. This review provides a more comprehensive understanding of the overall role of endothelial cells in cardiac hypertrophy and guides the therapeutic approaches and drug development of cardiac hypertrophy.


Assuntos
Cardiomegalia , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Cardiomegalia/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina/fisiologia , Fibroblastos/metabolismo
20.
Adv Sci (Weinh) ; 10(17): e2206814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37097733

RESUMO

Stiffness is an important physical property of biomaterials that determines stem cell fate. Guiding stem cell differentiation via stiffness modulation has been considered in tissue engineering. However, the mechanism by which material stiffness regulates stem cell differentiation into the tendon lineage remains controversial. Increasing evidence demonstrates that immune cells interact with implanted biomaterials and regulate stem cell behaviors via paracrine signaling; however, the role of this mechanism in tendon differentiation is not clear. In this study, polydimethylsiloxane (PDMS) substrates with different stiffnesses are developed, and the tenogenic differentiation of mesenchymal stem cells (MSCs) exposed to different stiffnesses and macrophage paracrine signals is investigated. The results reveal that lower stiffnesses facilitates tenogenic differentiation of MSCs, while macrophage paracrine signals at these stiffnesses suppress the differentiation. When exposed to these two stimuli, MSCs still exhibit enhanced tendon differentiation, which is further elucidated by global proteomic analysis. Following subcutaneous implantation in rats for 2 weeks, soft biomaterial induces only low inflammation and promotes tendon-like tissue formation. In conclusion, the study demonstrates that soft, rather than stiff, material has a greater potential to guide tenogenic differentiation of stem cells, which provides comprehensive evidence for optimized bioactive scaffold design in tendon tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Comunicação Parácrina , Ratos , Animais , Proteômica , Diferenciação Celular , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...